Easy Automation Concept

Lower costs with operation efficient RoboCylinder

Volume 1/10

1. Basic Functions of the RoboCylinder
 Function 1: Positioning (between 2 points) ------- Page 1

2. Application Examples
 Equipment for fastening bottle caps -------------- Page 3
 Equipment for polishing iron pipe interiors ------ Page 7

3. Maintenance
 Maintenance inspection -------------------------- Page 11
 Predictive maintenance functions --------------- Page 12

4. Basis of RoboCylinder Control
 1: Sequence control ----------------------------- Page 13

Battery-less absolute encoder
No battery, no maintenance, no home return,
and absolutely no price increase.
There is no going back to incremental.
Basic Functions of the RoboCylinder

Function 1: Positioning (between 2 points)

Equipment configuration and adjustment becomes this easy with a RoboCylinder

With a RoboCylinder

Only 1 cable is necessary to operate a RoboCylinder. The stop position is easily set with the position edit screen.

With an air cylinder

Several components are required for air cylinder configuration. This includes electrical wiring for speed controller regulators, auto switch regulators, shock absorber regulators, air pressure regulators, solenoid valves, and auto switches.
The time it takes for a RoboCylinder to start moving after an operation command is short.

A RoboCylinder moves in about 1/10 of the time it takes for an air cylinder to start moving.

With a RoboCylinder

It takes 0.02-0.03 seconds for the rod to actually start moving after the start of operation commands.

With an air cylinder

It takes 0.2-0.3 seconds for the rod to actually start moving after the start of operation commands.
Application Example 1

1 Equipment Overview

Explanation of use

This is equipment for press-fitting plastic caps for bottles.

Process

Process 1
Liquid filling
Plastic bottles are filled with liquid.

Process 2
Cap setting
Caps are set on top of the bottles.

Process 3
Cap press-fitting
Caps are press-fit onto the bottles.

Process 4
Inspection
Press-fit states of the caps are inspected.

Improvement tasks

- Reduce cycle time
- Reduce the amount of adjustment work
- Reduce the rate of defective products

Bottle Cap Press-fit Process

When using an air cylinder

- Air cylinder with double guide
- Plastic caps that open and close (Press-fit mounting type)
- Plastic bottles

Lower costs

- The rate of defective products from work deformation is 6% due to unstable speed during press-fitting. Defective products are discarded.

The speed for descending and press-fitting are the same when an air cylinder is used because speed change during descent is not possible with an air cylinder. In order to reduce cycle time, the descending speed has to be raised, and minute air volume adjustments must be made with the speed controller in order to prevent cap damage.

Equipment for fastening bottle caps

Equipment Overview

The rate of defective products from work deformation is 6% due to unstable speed during press-fitting. Defective products are discarded.

- The speed for descending and press-fitting are the same when an air cylinder is used because speed change during descent is not possible with an air cylinder. In order to reduce cycle time, the descending speed has to be raised, and minute air volume adjustments must be made with the speed controller in order to prevent cap damage.

Improved process with a RoboCylinder

Lower costs
How to Lower Costs with a RoboCylinder

The improvement tasks were completed by switching the air cylinder used in the cap press-fitting equipment to a RoboCylinder.

Point 1
Cycle time reduction accomplished

- **Air cylinder**
 - 3.4 seconds
 - Speed change during descent is not possible.
 - To limit the impact when contacting the cap, high speed movement is not possible.

- **RoboCylinder**
 - 3.0 seconds
 - It is possible to set the speed, acceleration, and deceleration.
 - With the push-motion function, high speed descent and low speed press-fitting operations are performed.

Point 2
Defective rate improved significantly

- **Air cylinder**
 - 6%
 - Fluctuations in the air pressure cause defective products to be made. (Minute speed adjustments must be made when defects occur.)

- **RoboCylinder**
 - 0%
 - Uses the push-motion function.
 - The push force can be set at a desired level.

Improved process with the 7 functions of the RoboCylinder

- With the RoboCylinder, the speed, acceleration, and deceleration can be set for each position. A stable movement is possible by setting the best speed, acceleration, and deceleration.

- The push-motion function can be used by simply setting the push force and push width (push movement range) in the position data.

Please visit here for “The 7 benefits of the RoboCylinder”
http://www.intelligentactuator.com/7
An air cylinder with a double guide is used in order to prevent the rod from wavering.

- Air pipes x2
- Sensor wires x2
- Sensor position adjustment
- Air quantity adjustment by speed controller

A ball rotating linear guide mechanism is built into the actuator.
- It can handle radial loads on the rod.
- It is also possible to handle loads that are offset from the center of the rod.
- The maximum stroke is 800mm.

What is a radial cylinder? Applicable models: RCP6(S)-RRA/WRA, RCP5/RCP4-RA

- Guide built-in
- 1 cable (Control panel ↔ actuator)
- Value setting by dedicated adjustment tools

~A rod type that doesn’t need a guide!? A radial cylinder is…~
3 Cost Cutting Effect

(1) Conditions

<table>
<thead>
<tr>
<th>Item</th>
<th>Equipment using air cylinder</th>
<th>Equipment using RoboCylinder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Needed Production Quantity</td>
<td>10000 bottles/ day</td>
<td></td>
</tr>
<tr>
<td>Number of Workers</td>
<td>1 person</td>
<td></td>
</tr>
<tr>
<td>Labor Cost</td>
<td>€ 18 * /hour ÷ 4 equipment = € 4.50 * /equipment</td>
<td>€ 4.50 * /equipment</td>
</tr>
<tr>
<td>1 worker was in charge of 4 equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Operation Days</td>
<td>250 days</td>
<td></td>
</tr>
<tr>
<td>Work Cost</td>
<td>8 cents* (bottle, cap)</td>
<td></td>
</tr>
</tbody>
</table>

(2) Comparison of air cylinder and RoboCylinder

<table>
<thead>
<tr>
<th>Item</th>
<th>Equipment using air cylinder</th>
<th>Equipment using RoboCylinder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle Time</td>
<td>3.4 seconds</td>
<td>3.0 seconds</td>
</tr>
<tr>
<td>Equipment Operation Time</td>
<td>9.5 hours /day (Normal operation time: 10000 bottles x 3.4 sec. = 34000 sec.)</td>
<td>8.3 hours /day (Normal operation time: 10000 bottles x 3.0 sec. = 30000 sec.)</td>
</tr>
<tr>
<td>Labor Cost</td>
<td>€ 10687.50 * /year</td>
<td>€ 9337.50 * /year</td>
</tr>
<tr>
<td>9.5 hours x € 4.50 * /hour = € 42.75 * /day</td>
<td>8.3 hours x € 4.50 * /hour = € 37.35 * /day</td>
<td></td>
</tr>
<tr>
<td>Discarding of Defects</td>
<td>€ 12000.00 * /year</td>
<td>€ 0 * /year</td>
</tr>
<tr>
<td>(600 bottles x 250 days x € 0.08 * = € 12000.00 *)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(3) Cost Cutting Effect

<table>
<thead>
<tr>
<th>Labor cost</th>
<th>Air cylinder</th>
<th>RoboCylinder</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>€ 10687.50 *</td>
<td>-</td>
<td>€ 9337.50 *</td>
<td>€ 1350.00 *</td>
</tr>
<tr>
<td>Discarding of defects</td>
<td>€ 12000.00 *</td>
<td>-</td>
<td>€ 12000.00 *</td>
</tr>
</tbody>
</table>

Result

An annual cost reduction of labor cost + discarding of defects = € 13350.00 * has been realized by switching to a RoboCylinder.

*Exchange Rate: 1 € = 100 Japanese Yen
1 Equipment Overview

Explanation of use
This is equipment for polishing the interiors of iron pipes with a brush.

Process

Process 1
Pipe cutting
Long iron pipes are cut to appropriate lengths

Process 2
Cut surface deburring
The cut surfaces are deburred.

Process 3
Pipe polishing
The interiors of the pipes are polished.

Process 4
Inspection
The conditions of the cut surfaces and the interiors of the iron pipes are inspected.

Improvement tasks

- To avoid impact when the brush is inserted into the iron pipe, the movement is performed at low speed, and minute speed adjustments are made every day.
- To ensure that the necessary quantity is produced, the polishing cannot be done more than once. As a result, 10% of the products are defective due to uneven polishing, and they have to be polished again.

Improvement tasks
- Reduce the amount of adjustment work
- Reduce cycle time
- Reduce the rate of defective products
- Improve product quality

Improved process with a RoboCylinder

Lower costs
How to lower costs with a RoboCylinder

The improvement tasks were completed by switching the air cylinder used in the pipe polishing equipment to a RoboCylinder.

Defective rate improved significantly

- **Point 1**
 - Air cylinder: 10% Polishing defects occur due to speed instability caused by changes in frictional resistance during polishing.
 - RoboCylinder: 0% Uneven polishing does not occur because the speed is uniform. Product quality improved by polishing twice.

Daily adjustments are unnecessary

- **Point 2**
 - Air cylinder: about 10 times/day The speed has to be adjusted for each lot since the load during polishing changes due to unevenness in the interior of the pipe.
 - RoboCylinder: 0 times/day Daily adjustments are unnecessary because operation is performed at a set speed, acceleration, and deceleration.
Point 3 Cycle time reduction accomplished

Air cylinder

Number of times polished: Back and forth once
Cycle time: 15 seconds

- To avoid impact when inserting the brush into the iron pipe, while also improving product quality, descent and polishing speed are fixed at low speeds.

RoboCylinder

Number of times polished: Back and forth twice
Cycle time: 12 seconds (6 seconds/cycle x back and forth twice)

- The speed, acceleration, and deceleration can be set for each position. Also, the low speed range can be set easily without a sensor by using the zone output.

- It became possible to polish twice because cycle time was reduced. Even at high speed, going back and forth twice has improved product quality.

Improved process with the 7 functions of the RoboCylinder

- Since the RoboCylinder can switch speed and acceleration/deceleration rates instantly, it can freely perform speed changes like fast→slow→fast.

- The low speed range can be set using zone output. Zone output does not require an external sensor, so it can be set easily without sensor deviations happening.
Cost Cutting Effect

(1) Conditions

<table>
<thead>
<tr>
<th>Item</th>
<th>Equipment using air cylinder</th>
<th>Equipment using RoboCylinder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Needed Production Quantity</td>
<td>2400 pipes/ day</td>
<td></td>
</tr>
<tr>
<td>Number of Workers</td>
<td>1 person</td>
<td></td>
</tr>
<tr>
<td>Labor Cost</td>
<td>18 € /hour ÷ 5 machines = € 3.60 * /machine</td>
<td>1 worker was in charge of 5 machines</td>
</tr>
<tr>
<td>Annual Operation Days</td>
<td>250 days</td>
<td></td>
</tr>
</tbody>
</table>

(2) Comparison of air cylinder and RoboCylinder

<table>
<thead>
<tr>
<th>Item</th>
<th>Equipment using air cylinder</th>
<th>Equipment using RoboCylinder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment Adoption Cost</td>
<td>€ 10000.00 *</td>
<td>€ 11000.00 *</td>
</tr>
<tr>
<td>Cycle Time</td>
<td>15 seconds (back and forth once)</td>
<td>12 seconds (back and forth twice)</td>
</tr>
<tr>
<td>Equipment operation time</td>
<td>11 hours/day</td>
<td>8 hours/day</td>
</tr>
<tr>
<td></td>
<td>Normal operation time:</td>
<td>Normal operation time:</td>
</tr>
<tr>
<td></td>
<td>2400 pipes x 15 sec. = 36000 sec.</td>
<td>2400 pipes x 12 sec. = 28800 sec.</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Redo polishing time:</td>
<td>Redo polishing time:</td>
</tr>
<tr>
<td></td>
<td>240 pipes x 15 sec. = 3600 sec.</td>
<td>0 pipes x 12 sec. = 0 sec.</td>
</tr>
<tr>
<td>Labor Cost</td>
<td>€ 9900.00 * /year</td>
<td>€ 7200.00 * /year</td>
</tr>
<tr>
<td></td>
<td>11 hours x € 3.60 * /hour = € 39.60 * /day</td>
<td>8 hours x € 3.60 * /hour = € 28.80 * /day</td>
</tr>
<tr>
<td></td>
<td>€ 39.60 * x 250 days = € 9900.00 * /year</td>
<td>€ 28.80 * x 250 days = € 7200.00 * /year</td>
</tr>
</tbody>
</table>

(3) Cost cutting effect

<table>
<thead>
<tr>
<th>Equipment operation time</th>
<th>11 hours</th>
<th>8 hours</th>
<th>3 hours reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor cost (annual)</td>
<td>€ 99 0 0 0.00 *</td>
<td>€ 72 0 0 0.00 *</td>
<td>€ 27 0 0 0.00 *</td>
</tr>
</tbody>
</table>

Result

An annual cost reduction of

\[\text{labor cost (annual)} = €27000.00*\]

has been realized by switching to a RoboCylinder.

*Exchange Rate: 1 € = 100 Japanese Yen
Maintenance Inspection

Notifies you of inspection and replacement times

Notification of grease replenishment and inspection times can be made by setting the travel distance and number of movements.

The following settings are made with a teaching pendant in order to use this function.

- **Target value for total distance traveled**
 Sums up the movement amount of the movement command positions, and creates a message alarm when the set value is exceeded.

- **Target value for total number of movements**
 Counts the number of movement commands, and creates a message alarm when the set value is exceeded.

Teaching Pendant Setting Screen

The target value for the total distance traveled is set here.

The target value for the total number of movements is set here.
Predictive Maintenance Functions

The following settings are made with a teaching pendant in order to use this function.

- **Overload load level ratio**

 The value of the load rate is set (50-99%). Creates a message alarm when the set value is exceeded.

The value is set here.

Teaching Pendant Setting Screen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>137, Reserve</td>
<td></td>
</tr>
<tr>
<td>138, Reserve</td>
<td></td>
</tr>
<tr>
<td>139, Reserve</td>
<td></td>
</tr>
<tr>
<td>140, IP address (HEX)</td>
<td>10.0.0.1</td>
</tr>
<tr>
<td>141, Subnet mask (HEX)</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>142, Default gateway (HEX)</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>143, Overload warning level</td>
<td>XX</td>
</tr>
<tr>
<td>144, GS magnification upper limit</td>
<td>YY</td>
</tr>
</tbody>
</table>

The value is set here.
A control that is performed according to a predetermined order is called sequence control. A circuit that lights a lamp with a switch is a sequence control.

Example control of lighting a lamp

When the switch is turned ON

1. The switch is turned ON.
2. The relay turns ON.
3. Electricity flows.
4. The lamp lights up.
Example control of a RoboCylinder

Operation Method

① Performs positioning to the specified position when the switch is turned on and the push button is pushed.

② The lamp lights up when positioning is complete.
IAI Industrieroboter GmbH
Ober der Röth 4
D-65824 Schwalbach / Frankfurt
Germany
Tel.: +49-6196-8895-0
Fax: +49-6196-8895-24
E-Mail: info@IAI-GmbH.de
Internet: http://www.eu.IAI-GmbH.de

IAI America, Inc.
2690 W. 237th Street, Torrance, CA 90505, U.S.A
Phone: +1-310-891-6015, Fax: +1-310-891-0815

IAI (Shanghai) Co., Ltd
Shanghai Jiahua Business Center A8-303, 808, Hongqiao Rd., Shanghai 200030, China
Phone: +86-21-6448-4753, Fax: +86-21-6448-3992

IAI CORPORATION
577-1 Obane, Shimizu-Ku, Shizuoka, 424-0103 Japan
Phone: +81-543-64-5105, Fax: +81-543-64-5192

IAI Robot (Thailand) Co., Ltd
825 PhairojKija Tower 12th Floor, Bangna-Trad RD., Bangna, Bangna, Bangkok 10260, Thailand
Phone: +66-2-361-4457, Fax: +66-2-361-4456

IAI, the IAI-logo, RoboCylinder™, the RoboCylinder™-logo, IntelligentActuator™ and the IntelligentActuator™-logo are trademarks or product names of IAI Corporation or of the subsidiaries in USA, China, Thailand or Germany