A Head of Steam; Industrial Instramental Solutions
For Boilers.
From the first industrial revolution to the fourth, inspirational change has been driven by a willingness to embrace the unconventional and cross-traditional industry boundaries. A partnership between Byworth Boilers and SICK Sensor Intelligence has helped fine-tune its boiler house controls to save up to 7% on consumer bills.
So, Let's Talk Boilers...
Heroic and Historic, Steam Has Always Had The Power to Inspire
It remains one of the most effective and efficient ways of transporting and delivering heat for modern industrial processes. As its heart is the industrial boiler, a process-critical workhouse that must always be completely reliable. With brands like Yorkshire, Dalesman and Fellsman, Byworth's boilers conjure up a nostalgic picture of more than 50 years as a family firm. Yet, throughout its history, the company has consistently demonstrated an insatiable appetite for innovation. With an agile approach to problem solving, its competitive advantage has been protected by a commitment to continuous improvement, reducing customers' fuel use, increasing operating efficiency and minimising downtime.
Industrial Boilers Are Energy Hungry
Measurement and control are the means to get every last drop of fuel efficiency, by keeping every element of pressure, level and temperature in perfect balance. Byworth's Research and Development centred on a fully operational boiler room at the Keighley site, where the latest instrumentation technology is carefully evaluated before being applied on customers systems.

Now, Where Do SICK Come Into This?
Byworth's relationship with SICK has grown from initial Research and Development trials of a simple pressure switch, to the point where Byworth has standardised on Sick instruments for various processes across its boiler ranges. SICK's PBS Pressure Sensor, LFP Guided Wave Radar Level Sensor, TBS Temperature Switch and DOSIC Ultrasonic Flowmeter, are used for new systems as well as replacement parts, and the FTS Flow Sensor, has recently completed successful tests in the Research and Development centre.
"We got solid reliability from SICK from the beginning. They have adapted their technology, provided training and support for us and our customers, and they have grown to understand the process very well."
Jason Atkinson, Head of Technical and Product Development
Standardisation Of Instrumentation
Standardisation of Instrumentation has been a continuing journey across the entire Byworth boiler range. This not only benefits customers, but also optimises the company's own operational efficiency. "The boiler industry is quite a conservative industry, so sometimes we have to push a little to recommend using the best technologies. We have driven out traditional boiler instrument suppliers to put SICK Sensors on our equipment. We use SICK's PBS pressure sensors to control the hot well tank level, as well as to regulate steam pressure output from the boiler. The PBS is a transmitter with two switch points. So, instead of having 3 or 4 different instruments, we could use one instrument on two different boiler designs. This also helped us move away from 230V and 110V towards a standard 24V DC control architecture. Not only does this save energy, space and reduce wiring, but the PBS pressure transmitters from SICK are all on M12 plug connectors, which makes it easier for our service engineers. They are just plug and play."
The PBS's on-sensor display enabled Byworth to reposition the pressure reading on the hot water feed, from the top of the tank to a workable, eye-level height. For many customers, the PBS's added analogue output has also proved an advantage, and again reduced the need to install another seperate sensor.

Guided Wave Radar Technology For Sensing
Water Level in The Boiler
Perhaps the greatest technology step-change of all came when SICK introduced a new guided wave radar technology, which Atkinson recognised could be used for sensing water level in the boiler. Until the arrival of SICK's LFP Inbox Sensor, Byworth had used either a capacitive sensor or a float system for continuous level measurement of water in the boiler. The capacitive sensor technology proved to be sensitive to foam and the float system sensitive to turbulence in the boiler.
The LFP Inbox from SICK overcame both of these challenges as it is neither sensitive to water foaming, when being poured into the boiler, or turbulance.
"The LFP guided wave radar gives us a much more reliable, accurate level, so we can run our feedwater system much more tightly"
Jason Atkinson, Head of Technical and Product Development
"We do not get so many swings in water level. The more the water level fluctuates, the less heat efficient the system is" SICK was able to develop a firmware adaption for the LFP to meet the combined requirements of a sensor insensitive to foam and turbulence with a display that is easily accessible to a boiler operator or service engineer. Not only did this mean the Byworth LFPs could be standardised on a 1.3 metre probe length, but the LFP's amplifier system offered a solution to seperating probe and electronics to give operators easier access to the display. So, the LFP in-tank probe is connected remotely to the sensor and emitter via a flexible coaxial cable which can be up to 3.3 metres long.

Successful Trials With DOSIC Ultrasonic Flow Sensor Confirm Competitiveness And Accuracy
Byworth's successful trials of the DOSIC Ultrasonic Flow Sensor from SICK confirmed its competitiveness and accuracy, so it has been introduced for feed tank metering on the smaller boiler range. Because feedwater has often undergone a reverse osmosis process, it can have a very low conductivity, so a magnetic flow meter could not be used. The DOSIC has also proved useful for fuel oil metering. Meanwhile, trials have recently completed to use Sick's new calorimetric FTS thermal flow switch to monitor flow in the softner drains. Standardising and rationalising into one central control was the concept behind Byworth's ground-breaking Unity Digital Control System, which won a Queen's Award for Enterprise in Innovation in 2016. Traditionally boilers have evolved with individual control systems for different parts of the boiler.
"On the Unity systems we have done studies that demonstrate fuel savings of 7 percent annually, over and above what is achieved just by installing new plant. That's based around how we control everything from one unit in the boiler house, rather than in seperate, individual processes - how we sequence boilers, how we modulate them, how we bring them online and so on," says Atkinson. "Standardising on sensors helps us to control the data coming from different parts of the boiler house a lot more finely. Of course, we are looking for accuracy, reliability and repeatability of measurement, too. Instruments like the guided wave radar were a hard sell for us to begin with, and we had to explain our rationale for using suppliers not traditionally associated with the boiler industry. But now those technologies are being asked for by customers and specified for new boilers. We have had to drive that change through."
"Our relationship with SICK has been a mutually beneficial partnership, where both companies have ended up with a better product."
Jason Atkinson, Head of Technical and Product Development
Looking for More Information? We Can Help With That...
If you would like more information about the SICK Pressure and Flow Sensors available at LC Automation, or have any questions, don't hesitate to call 01254 685900 and speak to one of our Technical Support Engineers, they will be happy to chat!
|